A Family of Adaptive Filter Algorithms in Noise Cancellation for Speech Enhancement

نویسندگان

  • Sayed A. Hadei
  • Mojtaba Lotfizad
چکیده

 Abstract— In many application of noise cancellation, the changes in signal characteristics could be quite fast. This requires the utilization of adaptive algorithms, which converge rapidly. Least Mean Squares (LMS) and Normalized Least Mean Squares (NLMS) adaptive filters have been used in a wide range of signal processing application because of its simplicity in computation and implementation. The Recursive Least Squares (RLS) algorithm has established itself as the "ultimate" adaptive filtering algorithm in the sense that it is the adaptive filter exhibiting the best convergence behavior. Unfortunately, practical implementations of the algorithm are often associated with high computational complexity and/or poor numerical properties. Recently adaptive filtering was presented, have a nice tradeoff between complexity and the convergence speed. This paper describes a new approach for noise cancellation in speech enhancement using the two new adaptive filtering algorithms named fast affine projection algorithm and fast Euclidean direction search algorithms for attenuating noise in speech signals. The simulation results demonstrate the good performance of the two new algorithms in attenuating the noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Restoration with Two-Dimensional Adaptive Filter Algorithms

Two-dimensional (TD) adaptive filtering is a technique that can be applied to many image, and signal processing applications. This paper extends the one-dimensional adaptive filter algorithms to TD structures and the novel TD adaptive filters are established. Based on this extension, the TD variable step-size normalized least mean squares (TD-VSS-NLMS), the TD-VSS affine projection algorithms (...

متن کامل

A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhan...

متن کامل

A Family of Selective Partial Update Affine Projection Adaptive Filtering Algorithms

In this paper we present a general formalism for the establishment of the family of selective partial update affine projection algorithms (SPU-APA). The SPU-APA, the SPU regularized APA (SPU-R-APA), the SPU partial rank algorithm (SPU-PRA), the SPU binormalized data reusing least mean squares (SPU-BNDR-LMS), and the SPU normalized LMS with orthogonal correction factors (SPU-NLMS-OCF) algorithms...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

Implementation of Adaptive Filtering Algorithm for Speech Signal on FPGA

Th is project gives the study of the principles of Adaptive Noise Cancellation (ANC) and its Applications. Adaptive noise Cancellat ion is an alternative technique of estimat ing signals corrupted by additive noise or interference. In signal processing methods of removing noise, levels of noise rejection are not attainable without prior knowledge about speech signal and noise. But in this metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1106.0846  شماره 

صفحات  -

تاریخ انتشار 2011